// lab3: listofnumbers
// <insert your name here>
// read main.cpp, and follow the instructions at the bottom of main.cpp
#include <iostream>
using namespace std;

int main()
{
	int numberOfElements = 0;
	float * elements = NULL;
	float userInput;
	bool addingNumbersToTheList;
	cout << "Keep entering numbers. Enter a non-number to stop." << endl;
	do
	{
		cin >> userInput;
		addingNumbersToTheList = !std::cin.fail();
		if(addingNumbersToTheList) {
			// make a bigger array to replace the old one
			float * biggerArray = new float[numberOfElements+1];
			if(elements != NULL)
			{
				// copy the old elements into the biggerArray
				for(int i = 0; i < numberOfElements; i++)
				{
					biggerArray[i] = elements[i];
				}
				// the old array is not needed anymore, we have a better copy
				delete [] elements;
			}
			// point at the new array
			elements = biggerArray;
			numberOfElements = numberOfElements+1;

			// put the new number into the last element of the array
			elements[numberOfElements-1] = userInput;
		}
	}
	while(addingNumbersToTheList);

	// fix cin after intentionally breaking it above.
	if(std::cin.fail())
	{
		std::cin.clear();
		while(std::cin.get() != '\n');
	}
	bool hasNumbers = numberOfElements > 0;
	if(hasNumbers) {
		// print the stored numbers
		cout << "Entered numbers: " << endl;
		cout << "{";
		for(int i = 0; i < numberOfElements; ++i)
		{
			if(i > 0)
			{
				cout << ", ";
			}
			cout << elements[i];
		}
		cout << "}" << endl;

		float sum = 0;
		for(int i = 0; i < numberOfElements; ++i)
		{
			sum += elements[i];
		}
		cout << "total: " << sum << endl;
		cout << "average: " << (sum / numberOfElements) << endl;
	}
	else
	{
		cout << "no numbers entered." << endl;
	}
	return 0;
}

[bookmark: _GoBack]
// INSTRUCTIONS
// ------------
// Compile this code. You should be able to enter any number of numbers into
// the console, but as soon as you enter a non-number, a list of every number
// you typed should display.
//
// Read through this code! Try to understand it before starting the assignment.
// Comment confusing lines with what you think code is doing, and experiment
// with existing code to test your understanding.
// Once you feel comfortable with this code, accomplish each of the following,
// and make sure your code compiles and runs after each step is completed.
//
// 1) The ManagedArray class
// a) Create a new class called ManagedArray. It should have a float pointer
// named "elements" to reference an array of floats, and an integer named
// "numberOfElements" to keep track of how many floats are in the array.
// b) Create a default constructor, which sets "elements" to NULL, and
// "numberOfElements" to 0.
// c) Create an accessor for the ManagedArray class called
// "int ManagedArray::size()", which returns the number of elements
// d) Create an accessor for the ManagedArray class called
// "float ManagedArray::get(int index)", which returns the value, in
// "elements", at the given index.
// e) Create a member function for ManagedArray called
// "void ManagedArray::add(float value)", which allocates a larger array
// than "elements", and replaces "elements" with it, adding 'value' to the
// end of it. This method should also increase "numberOfElements". See the
// code within the "if(addingNumbersToTheList) {" block.
// 2) Use ManagedArray
// a) Remove the "elements" and "numberOfElements" variables in main, and use
// a ManagedArray object to get the same functionality that was in main.
// 3) Destructor and Copy Constructor
// a) Create a destructor (named "ManagedArray::~ManagedArray()"), which
// deletes (with "delete []") the "elements" array.
// b) Create a copy-constructor (named
// "ManagedArray::ManagedArray(ManagedArray & ma)"), which copies the
// "numberOfElements" variable from "ma", and allocates an "elements"
// array the same size, with data copied from "ma".
// 4) Print Function
// a) Create a new function called "void print(ManagedArray ma)", which
// prints the given array, just like the code within the
// "if(hasNumbers) {" block.
// b) Use the print function to print out a ManagedArray at the end of your
// program.
// c) Use the print function to print out a ManagedArray a second time. This
// will crash your program if you wrote your destructor correctly but
// *did not* write your copy constructor correctly. If the program does
// not crash, comment out your copy constructor, recompile and try again,
// just to make sure you wrote your copy constructor correctly!
